Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhanhui Yuan and William Clegg*

School of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.028 wR factor = 0.075 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,*N*'-Dimethylpiperazinium(2+) bis[methylenehydrogendiphosphonate(1-)]

of title The asymmetric unit the compound. $C_6H_{16}N_2^{2+} \cdot 2(HO)_2(O)PCH_2P(O)_2(OH)^-$, contains two singly charged diphosphonate anions and two half-cations, each doubly charged cation lying on an inversion centre. Single deprotonation of methylenediphosphonic acid to give a salt with an organic amine is unprecedented, double deprotonation being normal. All N-H and O-H groups act as hydrogen-bond donors in the crystal structure, with unprotonated O atoms as the acceptors, giving a three-dimensional network.

Received 1 July 2005 Accepted 15 July 2005 Online 20 July 2005

Comment

Phosphonic and diphosphonic acids are extremely versatile building blocks in supramolecular chemistry (Farrell *et al.*, 2001; Ferguson *et al.*, 1998; Glidewell *et al.*, 2000; Wheatley *et al.*, 2001). An important factor in the behaviour of such acids is the marked difference in acidity for stepwise deprotonation of the two hydroxyl functions in each $-PO(OH)_2$ group. With organic amines, typically only one proton per phosphonate group is transferred from O to N. The resulting $-P(O)_2(OH)$ – group can thus act as a hydrogen-bond donor as well as an acceptor. The structure of methyldiphosphonic acid itself (DeLaMatter *et al.*, 1973) consists of a three-dimensional hydrogen-bonded network.

The title compound, (I), obtained unintentionally in one of a series of hydrothermal syntheses of aluminium diphosphonate complexes, is a 1:2 salt of diprotonated piperazine (generated by coupling of trimethylamine under the hydrothermal conditions) and the singly charged anion of methylenediphosphonic acid obtained by removal of only one proton; the second phosphonic acid group remains uncharged. Although there appears to be no previous report of such a reaction of trimethylamine to produce N,N'-dimethylpiperazine, this product can be obtained from trimethylamine oxide by deprotonation (Beugelmans *et al.*, 1985).

The asymmetric unit of (I) contains two anions and two half-cations, each cation lying on an inversion centre (Fig. 1). Both independent piperazine rings have the expected chair conformation, with the methyl substituents equatorial. All H

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The two cations (completed by inversion symmetry) and two anions in the asymmetric unit of (I), showing atom labels and with 50% probability displacement ellipsoids. [Symmetry codes: (i) 1 - x, 1 - y, -z); (ii) 1 - x, 1 - y, 1 - z.]

atoms bonded to N in the cations and to O in the anions were clearly identified in a difference map. The P–O bond lengths to the OH groups are all longer than those to unprotonated O atoms (Table 1). The shortest P-O bonds (P2-O6 and P4-O12) are found in the intact $P(O)(OH)_2$ phosphonic acid groups of the anions and can be assigned as P=O double bonds. The P-O bonds to unprotonated O atoms in the deprotonated P(O)₂(OH) phosphonate groups are intermediate in length; these are delocalized and intermediate between single and double bonds and can be assumed to carry the delocalised negative charge, while the P-OH bonds are single. Methyldiphosphonates in crystal structures are usually dianionic, with both groups deprotonated. Only in one previous report is a singly charged H₂O₃PCH₂PO₃H⁻ anion found (Hmimid et al., 1987); in this trithallium(I) compound, singly and doubly charged anions occupy the same position and are, therfore, disordered.

All N-H and O-H groups act as hydrogen-bond donors in the crystal structure of (I) (Fig. 2, Table 2). The acceptors are the unprotonated O atoms of the anions; since there are only six of these for the eight donors, two (atoms O2 and O8, which carry some shared negative charge in the delocalized phosphonate groups) are double acceptors. The hydrogen bonding generates a three-dimensional network.

Experimental

The title compound was obtained by hydrothermal synthesis, in an attempt to prepare an aluminium methylenediphosphonate complex. A mixture of $Al_2(SO_4)_3.18H_2O$ (98%, Alfa Aesar), methylenediphosphonic acid (98%, Alfa Aesar), hydrofluoric acid (48 wt.% in water, Aldrich), trimethylamine (48% in water, Fluka) and ethanol was combined in the molar ratio 1:3:9.43:9.52:100. Vigorous stirring led to complete dissolution of all reagents. The solution was then placed in a 23 ml Teflon-lined stainless steel autoclave and heated at 473 K for 10 d. The title compound, (I), was collected by filtration, washed with deionized water and air-dried. It is not known whether aluminium-containing products were in the resulting solid or in the filtrate. The solid material was largely an unidentified powder mixture containing single crystals of the title compound.

Figure 2

The packing of the ions, viewed down the a axis, with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Z = 2

 $D_r = 1.661 \text{ Mg m}^{-3}$

Cell parameters from 59

Mo Ka radiation

reflections

 $\theta = 2.5 - 27.5^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 27.5^\circ$

 $h = -9 \rightarrow 9$

 $k = -11 \rightarrow 11$

 $l = -21 \rightarrow 21$

Block, colourless

 $0.50 \times 0.50 \times 0.20$ mm

4037 independent reflections

3592 reflections with $I > 2\sigma(I)$

Crystal data

 $C_{6}H_{16}N_{2}^{2+} \cdot 2CH_{5}O_{6}P_{2}^{-}$ $M_{r} = 466.19$ Triclinic, $P\overline{1}$ a = 6.9881 (6) Å b = 8.9148 (6) Å c = 16.6251 (10) Å $\alpha = 98.910 (5)^{\circ}$ $\beta = 95.882 (6)^{\circ}$ $\gamma = 112.244 (6)^{\circ}$ $V = 932.24 (12) Å^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\rm min} = 0.800, T_{\rm max} = 0.915$ 12295 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0315P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.7406P]
$wR(F^2) = 0.075$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
4037 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXTI
independent and constrained	(Sheldrick, 2001)
refinement	Extinction coefficient: 0.011 (2)

Table 1

Selected bond lengths (Å).

P1-C1	1.8118 (16)	P3-C2	1.8088 (16)
P1-O1	1.5666 (12)	P3-O7	1.5646 (13)
P1-O2	1.5119 (11)	P3-O8	1.5312 (12)
P1-O3	1.5180 (11)	P3-O9	1.5055 (12)
P2-C1	1.8000 (16)	P4-C2	1.8021 (16)
P2-O4	1.5703 (12)	P4-O10	1.5494 (12)
P2-O5	1.5401 (11)	P4-O11	1.5583 (12)
P2-O6	1.4939 (12)	P4-O12	1.5005 (12)

Table 2		
Hydrogen-bond geometry	(Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$01 - H10 \cdots 06^{iii}$ $04 - H40 \cdots 08^{iv}$ $05 - H50 \cdots 03^{v}$	0.81(2) 0.83(2) 0.84(2)	1.73 (2) 1.76 (2) 1.63 (2)	2.5287 (16) 2.5799 (17) 2.4689 (16)	169 (2) 174 (2) 177 (2)
$O7-H7O\cdots O2$ $O10-H10O\cdots O8^{vi}$	0.83(2) 0.82(2)	1.03 (2) 1.71 (2) 1.73 (2)	2.5139 (16) 2.5228 (17)	162(2) 163(2)
$\begin{array}{l} O11-H110\cdots O9^{\text{vii}}\\ N1-H1N\cdots O2\\ N2-H2N\cdots O12 \end{array}$	0.83 (2) 0.86 (2) 0.88 (2)	1.70 (2) 1.97 (2) 1.79 (2)	2.5222 (17) 2.7802 (18) 2.6563 (18)	169 (2) 157 (2) 170 (2)

Symmetry codes: (iii) x + 1, y, z; (iv) x - 1, y - 1, z; (v) -x + 1, -y, -z; (vi) x - 1, y, z; (vii) -x + 2, -y + 2, -z + 1.

C-bound H atoms were positioned geometrically and refined with a riding model (including free rotation about C–C bonds), with C– H = 0.98 (CH₂) or 0.99 Å (CH₃) and with U_{iso} (H) = 1.2 (1.5 for methyl groups) times U_{eq} (C). H atoms bonded to N and O were located in a difference map and refined with restrained distances of N–H = 0.87 (2) Å and O–H = 0.84 (2) Å, and with U_{iso} (H) = 1.2 U_{eq} (N,O).

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DIRAX* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXTL*

(Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the EPSRC, UK, for financial support.

References

- Beugelmans, R., Benadjila-Iguertsira, L., Chastanet, J., Negron, G. & Roussi, G. (1985). *Can. J. Chem.* 63, 725–34.
- DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146– 1148.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrell, D. M. M. (2001). Acta Cryst. C57, 952-954.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.
- Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858.
 Hmimid, N., Besse, J. P. & Chevalier, R. (1987). Mater. Chem. Phys. 16, 175–180.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102.